A visible factor for analytic rank one

نویسنده

  • Amod Agashe
چکیده

Let E be an optimal elliptic curve of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the second part of the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of the subgroup generated by the Heegner point is equal to the product of the Manin constant of E, the Tamagawa numbers of E, and the square root of the order of the Shafarevich-Tate group of E (over K). We extract an integer factor from the index mentioned above and relate this factor to certain congruences of the newform associated to E with eigenforms of analytic rank bigger than one. We use the theory of visibility to show that, under certain hypotheses (which includes the first part of the Birch and Swinnerton-Dyer conjecture on rank), if an odd prime q divides this factor, then q divides the order of the ShafarevichTate group or the order of an arithmetic component group of E, as predicted by the second part of the Birch and Swinnerton-Dyer conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VISIBILITY FOR ANALYTIC RANK ONE or A VISIBLE FACTOR OF THE HEEGNER INDEX

Let E be an optimal elliptic curve over Q of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N are split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of the sub...

متن کامل

VISIBILITY FOR ANALYTIC RANK ONE or A VISIBLE FACTOR FOR ANALYTIC RANK ONE

Let E be an optimal elliptic curve of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the second part of the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of...

متن کامل

A Visible Factor of the Heegner Index

Let E be an optimal elliptic curve over Q of conductor N , such that the L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N are split and such that the L-function of E over K also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the Birch and Swinnerton-Dyer conjecture says that the index in E(K) of the sub...

متن کامل

Visibility and the Birch and Swinnerton-Dyer conjecture for analytic rank one

Let E be an optimal elliptic curve over Q of conductor N having analytic rank one, i.e., such that the L-function LE(s) of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split and such that the L-function of E over K vanishes to order one at s = 1. Suppose there is another optimal elliptic curve over Q of the same conductor N whose Mord...

متن کامل

Visibility for analytic rank one

Let E be an optimal elliptic curve of conductor N , such that the L-function LE(s) of E vanishes to order one at s = 1. Let K be a quadratic imaginary field in which all the primes dividing N split. The Gross-Zagier theorem gives a formula that expresses the Birch and Swinnerton-Dyer conjectural order the Shafarevich-Tate group of E over K as a rational number. We extract an integer factor from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008